
SECTION 5 

Hydraulics - General 

Introduction: The development of this section is based on the assumption 
that users will have available, as a working tool, a copy of the "Handbook 
of Hydraulics", Third Edition, by Horace W. King, McGraw-Hill Book Company. 
Those engineers whose work includes an appreciable amount of hydraulic com- 
putations will find time-saving, tabulated material in "Hydraulic Tables" 
by the War Department, Corps of Engineers, U. S. Government Printing Office. 
For brevity these two books are subsequently referred to as "King's Hand- 
book" and "Hydraulic Tables ." 

A partial list of other widely used publications dealing with the 
practical phases of hydraulics and hydraulic structures is given below. 
The need for and the usefulness of these or other handbooks not listed will 
depend on the amount and type of work encountered in different work unit 
areas. Inclusion in this list is not a recommendation for the books listed 
nor a recommendation against any book not listed. 

Handbook of Water Control - published by the R. Hardesty Mfg . Co. 
Handbook of Culvert and Drainage Practice - published by Armco 

Culvert Mfg. Assn. 
Handbook of Welded Steel Pipe - published by Armco Drainage and 

Metal Products, Inc., successors to R. Hardesty Mfg. Co. 
Concrete Pipe Lines - published by American Concrete Pipe Assn. 
Low Dams - by a Subcommittee of the National Resources Committee, 

U. S . Governmen-t Printing Off ice. 
Hydraulic and Excavation Tables - Bureau of Reclamation, Department 

of Interior, U. S . Government Printing Off ice. 

1. Symbols and Units 

1.1 Symbols. The symbols used and their definitions are: 

cross-sectional area. 

bottom width of channel. 

coefficient of discharge for weirs and orifices; 
constant in Hazen-Williams formula. 

diameter of circular section. 

depth of flow normal to channel bottom; 
diameter of pipe in feet. 

average depth of flow in a channel reach. 

critical depth of flow perpendicular to channg bottom. 

diameter of pipe in inches. 

mean depth of flow at a section. 

depth of normal flow; that is, depth of uniform flow. 

force . 



g = accelera t ion of gravi ty .  

H = t o t a l  head. 

W = spec i f i c  energy head. 
e 

h = f r i c t i o n  head. 
f 

h = pressure head. 
P 

h = ve loc i ty  head. v 
I = volume of inflow t o  a rese rvo i r .  

i = r a t e  of inflow t o  a rese rvo i r .  

K and K' = fac to rs  used i n  c e r t a i n  arrangements of Manning's formula and 
which vary with t he  r a t i o s  of spec i f i ed  l i nea r  dimensions of cross 
sec t ions .  

K = head l o s s  coef f i c ien t .  I n  most cases t h i s  symbol i s  used with a 
subscr ip t  t o  make it spec i f i c  and where so  used it i s  c l ea r l y  defined. 

L = length of channel o r  closed conduit; length of rectangular  weir c r e s t .  

k = length of a port ion of a channel o r  closed conduit. 

M = mass 

n = coef f ic ien t  of roughness i n  Manning's formula; an exponent. 

0 = volume of outflow from a reservoir .  

o = r a t e  of outflow from a rese rvo i r .  

P = t o t a l  pressure force;  a symbol used i n  a c e r t a i n  arrangement of 

Manning's formula, t he  value of which i s  
n2 

2.2082 x4l3 
P = hor izonta l  component of pressure force .  

H 
P = r e su l t an t  pressure fo rce .  
R 

P = v e r t i c a l  component of pressure force .  v 
p = i n t ens i t y  of pressure per un i t  of area; wetted perimeter. 

Q = t o t a l  discharge; t h a t  i s ,  volume of flow per un i t  of time. 

Qc = c r i t i c a l  discharge. 

Q = normal discharge. 
n 

q = discharge per un i t  of width. 

c 
= c r i t i c a l  discharge per u n i t  of width. 

9, = normal discharge per un i t  of width. 

R = Reynold's number 

r = hydraulic radius. 

rm = mean hydraulic radius i n  channel reach. 



S = volume of temporary reservoir  storage.  

s = slope; t ha t  is, t h e  tangent of t h e  angle a l i n e  makes 
with t h e  horizontal;  t he  slope of t h e  energy gradient  
i n  Manning's formula. 

s = c r i t i c a l  slope. 
C 

sf 
= f r i c t i o n  slope. 

s = slope of channel bottom. 
0 

T = width of flow at t h e  water surface; 
a conversion-time in t e rva l .  

t = time. 

V = volume. 

v = mean veloci ty  of flow. 

v = ve loc i ty  of approach. 
a 

v = c r i t i c a l  veloci ty .  
C 

v = normal velocity; t h a t  is, veloci ty  of uniform flow. 
n 

W = weight. 

w = un i t  weight. 

x = a hor izontal  distance or abscissa; an exponent; 
a variable; a time-conversion f ac to r .  

y = a v e r t i c a l  distance or  ordinate; a var iable .  
- - 
x, y = coordinates of t h e  center of g rav i ty  of an area.  

z = t h e  elevation of a specified point  above datum; t he  
slope of the  s ides  of t rapezoidal  sect ions  expressed 
as a r a t i o  of hor izontal  t o  v e r t i c a l .  

U (Greek alpha) = a k ine t i c  energy correction fac tor .  

p (Greek be ta )  = an angle defined spec i f i c a l l y  where used. 

8  r reek the t a )  = an angle defined spec i f ica l ly  where used. 

v  r reek nu) = kinematic viscosi ty .  

1.2 Units of the  foot-pound-second system a re  used unless others are  
specified.  Factors t o  be used i n  making conversions between various un i t s  
and dimensions a r e  available i n  Tables 1 t o  11, "King's Handbook." 

I n  many cases t he  conversion of un i t s  and dimensions i s  looked upon 
a s  a simple, unimportant process. The f a c t  is  t h a t  conversions a r e  a fre- 
quent source of e r ro r  i n  engineering computations. Valid equations must 
be e q r e s s e d  i n  corresponding units;  t h a t  is, i n  a t r u e  equation there  must 
be equal i ty  between both u n i t s  and numbers. Engineers can mater ia l ly  re-  
duce t he  chance of conversion e r ro r s  by forming the  habi t  of thinking i n  
terms of equal i ty  of u n i t s  as wel l  a s  equal i ty  of numbers. 



Problems of ten a r i s e  i n  which the  correct  re la t ionsh ip  between un i t s  
and dimensions i s  not read i ly  visualized and becomes c lea r  only by analy- 
s i s .  I n  these s i tua t ions  the  quick se lect ion of one or a s e r i e s  of con- 
version f ac to r s  not expressed i n  equation form and t e s t e d  fo r  va l id i ty ,  may 
r e s u l t  i n  cost ly ,  systematic e r ro r s .  As examples of t h e  use of sound prin- 
c i p l e s  i n  t h e  conversion process, consider t he  following: 

Example 1: 

1 cubic meter = Y gallons 

Basically t h i s  intends t o  express an equal i ty  between t w o  volumes; 
t h a t  i s ,  two d i f f e r en t  l i nea r  dimensions r a i s ed  t o  t h e  t h i r d  power. Since 
cubic meters can no more be equated t o  gallons than f re igh t  ca rs  can be 
equated t o  bicycles,  it i s  evident t h a t  some f ac to r  having dimensional a s  
well as  numerical value must be introduced i f  t h e  expression i s  t o  be made 
a va l id  equation. Analysis shows t h a t :  

ga l .  
264.17 ga l .  

Note t ha t  a l l  dimensions on t he  l e f t  cancel, leaving t h e  unit ,  gallon; 
t h a t  i s ,  corresponding uni ts ,  on each side of t he  equation. The analysis  
r e s u l t s  i n  a general equation f o r  conversions between cubic meters and 
gallons : 

g a l  X m3 x 264.17 - = Y ga l .  
m3 

Example 2: 

1 acre-foot per hour = Y gallons per minute 

Step by s tep  analysis  r e s u l t s  i n  a va l id  conversion equation consist-  
ent i n  both un i t s  and dimensions: 

a c . - f t .  43560 f t . 2  x-- X 
1 hr. 

h r .  55 &. X 
1 ac. 

gal.  
ac . - f t .  min . 
hs. 5431 ac .-ft .  

Example 3: 
1 cubic foot  per second-day = Y acre  

7.4805 ga l .  - - gal. 
ft.3 

+ 5431 min. 

g a l .  = y -  
min . 

f e e t  

Analysis r e s u l t s  i n :  

ft.3-day 1 ac. 
X 

24 x 3600 sec.  - - 
sec . X43560z 1 day - 1.9835 a c . f t .  



Engineers who w i l l  approach conversion problems by the  use of the  
pr inciples  i l l u s t r a t e d  above should secure t he  following benef i t s :  
(1) freedom from conversion errors;  ( 2 )  savings i n  time required f o r  both 
o r ig ina l  and "check" computations; and (7 )  accuracy of conversion fac tor  
se lec t ion  from standard t ab l e s  or other sources. 

2 Hydrostatics 

2 Unit hydrostat ic pressure var ies  d i r e c t l y  with t he  depth and 
t he  un i t  weight of water and i s  expressed by t he  equation: 

p = i n t ens i t y  of pressure per un i t  of area .  
w = u n i t  weight of water. 
h = depth of submergence, or head. 

Useful working equations a r e :  

p, i n  p . s . i .  = 0.433 h, i n  f t .  
p, i n  ~ b . / f t . ~  = 62.4 h, i n  f t .  

I n  a body of water with f r e e  surface, t he  t o t a l  un i t  pressure i s  the  
sum of t he  l i qu id  pressure and t he  atmospheric pressure.  The majority of 
hydraulic s t ruc tures  a r e  b u i l t  and operate under conditions such t h a t  at- 
mospheric pressures a r e  balancing forces which may be neglected.' However, 
when s ign i f ican t ,  atmospheric pressure should be f u l l y  considered and i t s  
e f fec t  upon hydraulic operation and s t ruc tu r a l  s t a b i l i t y  determined. Ex- 
amples of s t ructures  whose operation or s t a b i l i t y  may be affected by a t -  
mospheric pressure a re  pipe l i n e s  having a port ion of t h e i r  length above 
t he  hydraulic grade l ine ;  weirs with nonadhering nappe which do not have 
the  under s i de  of the  nappe f r e e  t o  t he  atmosphere. 

2.2 Pressure loadings. The analysis  of s t ruc tures  ucder pressure 
loads w i l l ,  i n  most cases, be f a c i l i t a t e d  by t he  use of pressure diagrsz,: 
Since unit  pressure var ies  d i r e c t l y  with head, diagrams showing t h e  var i -  
a t ion  of u n i t  pressure i n  any plane take t h e  form of t r i ang les ,  trapezoids, 
or rectangles.  Typical pressure diagrams and a ides  t o  working with such 
diagrams a r e  shown on drawing ES-31. 

2.3 Buoyancy. A submerged body is  acted on by a ve r t i c a l ,  buoyant 
force equal t o  t he  weight of t he  displaced water. 

F = Vw 
B 

F = buoyant force.  
B 

V = volume of the  body. 

w = un i t  weight of water. 

I f  the  un i t  weight of t he  body i s  g rea te r  than t ha t  of water, there  i s  
an unbalanced, downward force equal t o  t he  difference between t he  weight of 



the  body and of an equal volume of water, and t he  body w i l l  s ink.  If  the  
body has a u n i t  weight l e s s  than t h a t  of water, t he  body w i l l  f l o a t  with 
par t  of i t s  volume below and par t  above t he  water surface i n  a posi t ion 
such t ha t :  

W = weight of the  body. 
V = volume of the  body below the  water surface, i . e .  

t h e  volume of the  displaced water. 
w = un i t  weight of water. 

Close examination should be made of the  s t a b i l i t y  of hydraulic s t ruc-  
t u r e s  a s  it w i l l  be affected by: (1) whether t h e  s t ruc ture  will be sub- 
merged; ( 2 )  whether wide var ia t ions  i n  buoyant forces  and net  or e f fec t ive  
weights a r e  possible.  

Porous materials ,  when submerged, are subject  t o  d i f fe ren t  ne t  weights 
and are acted on by d i f fe ren t  buoyant forces depending upon whether t h e  
voids a re  f i l l e d  with a i r  or water. Note t h e  wide var ia t ion  i n  t he  possi- 
b l e  net  weight of one cubic foot  of t rea ted  s t r u c t u r a l  timber weighing 
55 l b s .  under average atmospheric moisture conditions and having 30 percent 
voids : 

1 f t  .3 of s t ruc tu r a l  t i m -  Before Saturat ion After Saturat ion 
ber,  30 percent voids 

W = weight i n  a i r ,  l b s .  53. 35 + ( O . 3 O  x 62.4) = 73.72 

FB = buoyant force when 
submerged, l b s  . 62.4 

W-F = weight when sub- 
merged i n  water 
(ne t  weight), l b s .  55 - 62.4 = - 7.4 75-72 - 62.4 = 11.32 

The degree t o  which t he  f ac to r s  discussed above are  capable of a f fec t -  
ing the  net  or s t ab i l i z i ng  weight of a s t ruc ture  i s  i l l u s t r a t e d  by t h e  f o l -  
lowing example : 

Assume a timber c r lb  diversion dam subject  t o  complete submergence 
under normal f lood flows. Materials, weights, and volumes are:  

Percent of Volume Unit Weights 
Material  of the  D a m  l b s  /f t3 

Timber 
Timber 
Loose stone, 30 
percent voids 

55 i n  a i r  
73 saturated 

150 s o l i d  stone 

Determine t h e  ne t  weight of one cubic yard of t h e  dam when (1) not  sub- 
merged; (2 )  submerged but timber not saturated; ( 3 )  submerged with timber 
saturated:  

1. Compute cubic f e e t  of timber, so l i d  stone, and voids per cubic 
yard of dam: 



a .  Timber: 
b .  So l id  stone: 0.7 x 
c. Voids: 0.3 x 

2. Compute the net weights 

Material 
Not Submerged 

of one cubic yard of dam: 

Timber 

S t  one 

I of Materials i n  l b s  . /cu. yd. of Dam 

3.24 x 55 = 178 
16.63 x 1% = 2494 - 

Submerged 

Effect ive  or  s tab i -  
l i z i n g  weight of 
dam per cu. yd. = 2672 

u 

Timber not Saturated Timber Saturated 
I 
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3. Fundamentals of Water Flow 

3.1 Laminar and Turbulent Flow. Water flows with two d i s t inc t ly  d i f -  
ferent types of motlon; laminar and turbulent. 

When laminar flow occurs, the individual par t ic les  of water move along 
s traight  or orderly path l ines .  I n  s t raight  conduits the path l ines  are  
s t raight  and parallel;  i n  irregular conduits or i n  passing obstacles they 
are orderly l i nes  which do not intersect .  With laminar motion, the mean 
velocity of flow varies d i rec t ly  with the slope of the hydraulic gradient. 

I n  the case of turbulent flow, the water par t ic les  follow winding, ir- 
regular paths tha t  are generally sp i r a l  i n  form. I n  addition t o  the main 
velocity in  the direction of flow, there are transverse components of velo- 
c i ty .  The mean velocity of flow varies with the square root of the slope 
of the hydrauLic gradient. 

The change from laminar t o  turbulent flow occurs a t  a velocity which i s  
determined by the dimensions of the conduit and the viscosity of the water. 
I n  engineering practice the decision as t o  whether laminar or turbulent fluw 
w i l l  occur i n  a given case is  based on the Reynold's number value. 

R = Reynold's number.. 

L = a l inear  dimension of the conduit such as 
diameter of pipe or depth of flow. 

v = mean velocity of flow. 

v  r reek nu) = kinematic viscosity.  

Reynold's number i s  dimensionless; t ha t  is, it has the same value re- 
gardless of the system of consistent units used. The reports of various 
investigators indicate tha t  i n  pipe flow Reynold's number values of 2000 or 
l e s s  characterize laminar motion, and 3000 or more turbulent motion with a 
t ransi t ion range between these values. There m e  fewer reports of experi- 
ments with open flow, but It appears tha t  Reynold's number values comparable 
t o  the above fo r  open flow are  about 500 t o  1500 respectively. Reynoldf s 
number is the  r a t i o  of i n e r t i a  force t o  viscous force and has broader s i g -  
nificance than serving only as  a c r i te r ion  t o  distinguish between laminar 
and turbulent flow. 

The type of motion with which water flows under different conditions 
has pract ical  significance. Laminar flow is important t o  the  hydraulic 
engineer because it i s  the type of motion with which percolation occurs. 
Problems dealing with the passage of water through soi ls ,  sands, gravels, 
or porous sol ids  are  solved by the application of the mechanics of laminar 
flow. Turbulent motion characterizes the flow i n  f i e l d  hydraulic struc- 
tures .  



3.2 Continuity of Flow, When t h e  discharge at  a given cross sec t ion  
of a channel or  pipe i s  constant with respect  t o  time, t he  flow i s  steady. 
I f  s teaay flow o c w s  a t  a l l  sec t ions  i n  a reach, t h e  flow i s  continuous 
and 

Q = discharge. 

a = cross-sectional  area.  

v = mean ve loc i ty  0.f flow. 

1,2,3 = subscr ip ts  denoting d i f f e r en t  cross sect ions .  

Equation (5.3-2) is  known as  t he  equation of continuity.  The major- 
i t y  of our hydraulic problems deal  with cases of continuous flow. 

7.3 Energy and Head. Three forms of energy a r e  normally considered 
i n  t h e  analys is  of problems in. water flow: k ine t i c  energy, po t en t i a l  en- 
ergy, and pressure energy. 

Kinetic energy e x i s t s  by v i r t ue  of t he  veloci ty  of motion and amounts 
t o  ~ 3 / 2 ,  where M is  any mass and v i s  veloci ty .  Since M = W g t he  k i -  
n e t i c  energy is  W$ /zg, and when W = 1 ib . it has t h e  value A/'&. Note 
t h a t  v2/2g being conposed of t he  following un i t s  expresses veloci ty  head 
only: 

ft2/sec2 = f t Z  see2 
X - -  - ft. 

ft /sec2 sec2 f t  

However, it i s  d i r e c t l y  proport ional  t o  t he  k ine t i c  energy of t he  flow- 
ing water and i s  derived by assuming a weight of 1 lb ;  therefore,  It i s  
an expression of t h e  k ine t i c  energy i n  foot  pounds per pound. I f  time i s  
considered, t h e  ve loc i ty  head is a l s o  an expression of foo t  pounds per 
pound per  second. 

Po t en t i a l  energy is  t he  a b i l i t y  t o  do work because of t he  e levat ion 
of a mass of water with respect  t o  some datum. A mass of weight, W, a t  
an e levat ion z f e e t ,  has po t en t i a l  energy amounting t o  Wz foot  pounds with 
respect  t o  t he  datum. The e levat ion head, z, expresses not only a l i n e a r  
quant i ty  i n  f e e t ,  but  a l so  energy i n  foo t  pounds per pound. 

A mass of water as such does not have pressure energy. Pressure 
energy i s  acquired by contact with other  masses and is, therefore,  t r an s -  
mi t ted  t o  or through t he  mass under considerat ion.  The pressure head, 
p/w, l i k e  t h e  ve loc i ty  and elevation heads, a l so  expresses energy i n  fout  
pounds per pound. 

The re la t ionsh ip  between t h e  t h r ee  forms of energy i n  pipe flaw and 
i n  channel flow i s  shown by f i g .  5.3-1. On t he  r i gh t  i n  each case i s  shown 



t h e  ve loc i ty  head, pressure head, and e levat ion head fo r  a  stream tube a t  
point A i n  sect ion 1. On t h e  l e f t  i s  shown the  t o t a l  head and the  th ree  
separate energy heads f o r  t he  sect ion containing A .  The distance from any 
stream tube t o  i t s  energy l i n e  i s  the  sum of pressure and ve loc i ty  heads. 
I f  all stream tubes composing flow have equal energy a t  a given section,  
va r ia t ions  i n  the  veloci ty  heads of stream tubes must be balanced by equal 
and opposite changes i n  t h e  pressure heads. Therefore, i f  a l l  stream tubes 
a r e  t o  have a common energy l i n e  a t  a  section,  two conditions must be sa t -  
i s f i ed :  (1) pressure i n t ens i t y  must vary a s  a  s t r a i gh t  l i n e  i n  accordance 
with the  hydrosta t ic  law; ( 2 )  t he  flow must be  p a r a l l e l  and t h e  ve loc i t i e s  
of a l l  stream tubes must be equal .  

I n  p ipe  flow a  change i n  pressure head causes a  uniform change i n  pres- 
sure i n t ens i t y  throughout a  given cross sect ion.  Therefore, changing hydro- 
s t a t i c  head on a pipe system does not a l t e r  t he  pa t t e rn  of motion, and the  
var ia t ion i n  the  energy of t h e  individual  stream tubes composing flow a t  any 
cross sect ion under a  given hydrosta t ic  head r e s u l t s  only from t he  unequal 
ve loc i t i e s  of the  stream tubes.  This i s  i l l u s t r a t e d  by f i g .  5.3-2.  The 
pressure diagram on t h e  v e r t i c a l  diameter of a pipe is  shown by ABCR. The 
complete pressure diagram i s  a truncated cylinder f o r  which each v e r t i c a l  
sect ion is  s imi la r  t o  ABCE. Variat ion of the  pressure head, kp, would 
change only t h e  ABCD port ion of the  pressure diagram f o r  which t he  un i t  
pressure i s  uniform. Furthermore, po t en t i a l  energy, the  sum of pressure 
and e levat ion heads, with respect  t o  any datum is  constant over t he  cross 
section,  s ince  var ia t ion  i n  pressure head is  balanced by an equal and oppo- 
s i t e  va r ia t ion  i n  e levat ion head. Variat ion i n  t h e  ve loc i t i e s  of the  d i f -  
ferent  stream tubes accounts f o r  the  va r ia t ion  i n  the energy of flow of the  
stream tubes a t  a  given sect ion.  



1- ve/o c ; /y 
Dis f r ibu f i o n  

Energy in Pipe f /ow of CY Cross Sec f ion 

FIG. 5.3-2 

I n  open flow, pressure at t he  surface i s  atmospheric, and i n t e rna l  
pressure cannot be changed without a l t e r i ng  t h e  pa t te rn  of flow. Curvi- 
l i n e a r  flow changes t he  in te rna l  pressure d i s t r ibu t ion  through dynamic 
e f f ec t  and, therefore ,  chaages t he  flow pat tern .  

If open flow i s  para l l e l ,  t h e  po ten t ia l  energy head i s  constant over 
any cross sect ion and only the  veloci ty  head var ies  from one stream tube 
t o  mother .  This i s  i l l u s t r a t e d  by f i g .  5.3-3. 

FIG. 5.3-3 



The above shows t h a t  i n  order t o  obtain a t o t a l  head accurately rep- 
resenting t he  mean energy of flow, it i s  necessmy t o  compute a weighted 
mem veloci ty  head for  addit ion t o  t he  constant po ten t ia l  head a t  a cross 
section.  The equation expressing t h e  weighted mean veloci ty  head is :  

hv = weighted mean veloci ty  head of flow a t  a cross sect ion.  
v = mean veloci ty  of flow. 
g = acceleration of gravi ty .  
a  r reek alpha) = a k ine t ic  energy correction factor ,  t he  

value of which depends upon t he  d i s t r i bu t i on  of ve loc i ty  
i n  t he  cross section of flow. 

A method of determining a i s  given on page 260 of "King's Handbook." 
The value of a f o r  r e l a t i ve ly  uniform veloci ty  d i s t r ibu t ion  i s  1.05 t o  
1.10. Wide var ia t ions  i n  veloci ty  such a s  a r e  found i n  obstructed flow 
or  i r regu la r  alignment may produce values of a of 2.0 or g rea te r .  Prob- 
lems may be encountered, therefore,  i n  which a k ine t ic  energy correction 
must be applied t o  veloci ty  head i f  computations within reasonable l i m i t s  

f  accuracy a re  t o  be made. I n  the majority of cases $ / 2 g  i s  accepted 
a su f f i c i en t l y  accurate expression of ve loc i ty  head. 

I n  pipe flow problems it is  comon prac t ice  t o  measure elevation 
head from the  datum t o  t h e  center l i n e  of t h e  pipe, t he  pressure head 
from t h e  center l i n e  t o  t h e  piezometric surface, and the  veloci ty  head 
from the  elevation established by the  pressure head. I n  open channel 
flow t h e  elevation head is  measured from the  datum t o  t he  bottom of the  
channel, pressure head i s  t h e  depth of f l o w ,  and velocity head i s  mea- 
sured from t h e  water surface.  

3.4 Bernoulli Theorem. This theorem i s  t h e  appl icat ion of t he  
l a w  of conservation of energy t o  f l u i d  flow. It may be s t a t e d  as fo l -  
lows: I n  f r i c t i o n l e s s  f l o w  t h e  sum of t h e  k ine t ic  energy, pressure 
energy, and elevation energy i s  equal a t  a l l  sections along a stream. 
I n  pract ice ,  f r i c t i o n  and a l l  other energy losses  must be considered 
and t h e  energy equation becomes: 

v = mean veloci ty  of flow. 
p = un i t  pressure.  
w = unit weight of water. 
g = acceleration of gravi ty .  
z = elevation head. 
hk = a l l  losses  i n  head other than by f r i c t i o n  between 

sections 1 and 2.  
hf = head l o s t  by f r i c t i o n  between sections 1 and 2. 

1 and 2 denote upstream and downstream sect ions  respect ively .  

The energy equation and t he  equation of continuity a r e  t h e  two 
basic,  simultaneous equations used i n  solving problems i n  water flow. 




